

Pavement Coring and Ground Penetrating Radar Results Carolina Crossroads GPR Survey Columbia, South Carolina S&ME Project No. 6205-20-008

PREPARED FOR

South Carolina Department of Transportation 955 Park Street P.O. Box 191 Columbia, SC 29201

PREPARED BY

S&ME, Inc. 3201 Spring Forest Road Raleigh, NC 27616

July 13, 2020

July 13, 2020

South Carolina Department of Transportation 955 Park Street P.O. Box 191 Columbia, SC 29201

Attention: Mr. Luke Gibson

Reference: Pavement Coring and Ground Penetrating Radar Results Carolina Crossroads GPR Survey Columbia, South Carolina S&ME Project No. 6205-20-008

Dear Mr. Gibson:

The purpose of this report is to present the pavement Ground Penetrating Radar (GPR) survey along I-20, I-26, and I-126 for the Carolina Crossroads Project located near Columbia, South Carolina. Our services are being performed in general accordance with the approved scope of services in the Master Agreement for Pavement Design, Evaluation, and Investigation Services between S&ME, Inc. and SCDOT dated January 25, 2019 and Notice to Proceed (NTP) authorized by SCDOT dated May 21, 2020.

Sincerely,

S&ME, Inc.

VIdemin G. MAcleu

Vladimir Mitchev, PE Project Manager

Kevin Hon, PG Geophysical Project Lead

Senior Review: Kristen Hill, PG, PE

Table of Contents

1.0	Project Informationii
2.0	Ground Penetrating Radar (GPR) Surveyii
2.1	GPR Methodology, Field Survey, and Data Processingii
2.2	GPR Results iv
3.0	Existing Pavement Evaluationiv
3.1	Pavement Coringv
3.2	Subgrade Testing1
4.0	Limitations

List of Figures

Figure 1-1: Site Location Map	ii
Figure 2-1: Sample Core Photos	vii

List of Tables

Table 2-1: GPR Designations and Locations iii
Table 3-1: Core Data – I-20v
Table 3-2: Core Data – I-26v
Table 3-3: Core Data – I-126vi
Table 3-4: KDCP Data – I-20
Table 3-5: KDCP Data – I-261
Table 3-6: KDCP Data – I-1262

Appendices

Appendix I – Core Photographic Log Appendix II – Kessler Dynamic Cone Penetrometer Graphs Appendix III – Core Data Sheets

1.0 Project Information

Project information was provided via phone conversation and email correspondence between Jay Thompson and Luke Gibson with SCDOT and Vladimir Mitchev and Jayson Jordan with S&ME between March 26 and May 21, 2020. SCDOT requested pavement testing to be performed for the locations of interest below. These areas include the following:

- I-26 from MM 107.0 to 109.5 all lanes and outside shoulder
- I-126 from MM 0.0 to MM 1.5 all lanes and outside shoulder
- I-20 from MM 64.0 to 66.3 (Bridge) outside shoulders only

Figure 1-1: Site Location Map

S&ME performed the pavement testing consisting of GPR survey, coring, and Kessler Dynamic Cone Penetrometer (KDCP) testing. The data and analysis are presented below.

2.0 Ground Penetrating Radar (GPR) Survey

2.1 GPR Methodology, Field Survey, and Data Processing

On April 27, 2020, S&ME conducted a Ground Penetrating Radar (GPR) survey along the requested sections of the I-20, I-26, and I-126 outside shoulders and travel lanes to identify lateral changes, and associated thicknesses, of the underlying asphalt and concrete pavements.

GPR transmits electromagnetic waves into the pavement from an antenna at a specific frequency and measures the travel time for wave reflections to be received from interfaces between materials with differing dielectric properties (e.g. asphalt/concrete, concrete/base course, etc.). The intensity of the reflected GPR signal is a function of the contrast in the electrical properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the signal is traveling through, and the frequency of the signal. GPR antennas can be either air-launched (horn-type) or ground-based. However, horn antennas are generally necessary for high speed data acquisition as they are suspended about 18 inches off the ground. Layer-specific dielectric permittivity used for depth calculations are also automatically generated when using an air-launched antenna and preferred for pavement evaluations. A distance measuring interval (DMI) encoder, attached to the vehicle, is used for triggering the GPR signal and to have a distance reference. These measurements are also typically supported with a global positioning system (GPS), which sends a continuous data output stream to the GPR controller during acquisition.

We used a Geophysical Survey Systems, Inc. (GSSI) RoadScan[™] 30 system equipped with a 2 GHz air-launched horn antenna using a sub-meter GPS as positioning support in general accordance with ASTM D4748 *"Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar"*. GPR data were generally collected down the center of each travel lane and along two (2) transects for the shoulders; one (1) at approximately 3 to 4 feet offset from the white stripe (Center) and one (1) at approximately 6 to 8 feet offset from the white stripe (RT Edge). GPR data file designation numbers and associated locations are presented in *Table 1* below. Data was acquired at two scans per foot (i.e. every 6 inches) and post-processed using the GSSI Radan[®] 7 software with RoadScan[™] module. Cores performed at the site were used to assist with our interpretations; SCDOT (2017) and S&ME (2020).

GPR File Number	Location/Description		
002	I-26, EB Shoulder RT Edge		
003	I-26, WB Shoulder RT edge Through Bush River Rd Exit lanes		
005	I-26, WB Shoulder center Through Bush River Rd Exit lanes		
007	I-26, EB Shoulder Center		
008	I-26, WB Shoulder RT Edge, Left of Jersey Barrier		
009	I-26, WB Shoulder Center, Left of Jersey Barrier		
010	I-20, EB Shoulder RT Edge		
011	I-20, WB Shoulder RT Edge		
012	I-20, EB Shoulder Center		
013	I-20, WB Shoulder Center		
014	I-126, EB Shoulder RT Edge		
015	I-126, WB Shoulder RT Edge		
016	I-126, EB Shoulder Center		
017	I-126, WB Shoulder Center		
019	I-26, EB Lane 4 to I-126, EB Lane 2		
020	I-26, WB Lane 3 to Lane 1 Bush River Rd Exit		

Table 2-1: GPR Designations and Locations

021	I-26, WB Lane 4 Past Bush River Rd
022	I-26, EB Lane 3 to Lane 1 Past I-126
023	I-26, WB Lane 4 to Lane 2 Bush River Rd Exit
026	I-26, EB Lane 3 from I-126 Ramp
027	I-26, WB Lane 2
028	I-26, WB Lane 1 to I-26, WB Lane 3
029	I-26, EB Lane 2 to I-126, EB Lane 2
030	I-126, WB Lane 4
031	I-26, EB Lane 3 to I-126, EB Lane 3
032	I-126, WB Lane 3
033	I-26, EB Lane 1 to I-126, EB Lane 1
034	I-126, WB Lane 2 to I-26, WB Lane 2
035	I-126, EB Lane 4 from Colonial Life Blvd On-Ramp
036	I-126, WB Lane 1 to I-26, WB Lane 1
038	I-20, WB Lane 3
039	I-20, EB Lane 3
040	I-20, WB Lane 2
041	I-20, EB Lane 2
042	I-20, WB Lane 1
043	I-20, EB Lane 1
044	I-20, WB Lane 4 to Broad River Rd Exit

Note: Travel lane designations start at outside lane (1) with incremental designations toward inside lane

2.2 GPR Results

The following summarizes the GPR results:

- Based on the cores performed by SCDOT (2017) and S&ME (2020), two (2) layers were interpreted in the GPR data sets; asphalt and concrete.
- Asphalt thicknesses appear to generally range between about 4 and 24 inches and concrete thicknesses appear to generally range between about 8 and 12 inches.
- Interpreted data thickness profile plots for both layers along each GPR transect are provided digitally in an Excel spreadsheet format.
- For visual reference, associated interpreted color-coded thickness plots for both layers along each GPR transect are provided digitally in Google Earth KMZ format.

3.0 Existing Pavement Evaluation

S&ME conducted the coring portion of the project on May 27-28, 2020. The pavement was cored at locations selected by the GPR team to calibrate the GPR survey with ground truth data.

3.1 Pavement Coring

S&ME obtained eight (8) pavement cores along the project length of I-20 (four in the westbound and four in the eastbound direction), thirteen (13) pavement cores along I-26 (five in the eastbound direction and eight in the westbound direction), and five (5) pavement cores along the I-126 (one in the eastbound direction and four in the westbound direction). Cores were taken in the outside lane and outside shoulder at the locations selected to assist in calibration and verification of the GPR data. Cores thickness and composition varied. Core information for each highway section is presented in the tables below. Core photographs were also obtained and are included in Appendix I.

Core #	Asphalt Thickness	Concrete Thickness	ABC Present
I-20 WB C-1 OSS	15.25	-	-
I-20 WB C-1 OSL	9.5	9.5	4.0 +/-
I-20 WB C-2 OSS	17.75	-	-
I-20 WB C-2 OSL	13.25	-	-
I-20 EB C-4 OSS	10.75	-	-
I-20 EB C-4 OSL	3.35	9.5	3.0 +/-
I-20 EB C-5 OSS	16.0	-	-
I-20 EB C-6 OSS	12.0	-	-

Table 3-1: Core Data - I-20

Table 3-2: Core Data - I-26

Core #	Asphalt Thickness	Concrete Thickness	ABC Present
I-26 EB C-7 OSS	9.0	-	11.0 +/-
I-26 EB C-8 OSS	10.75	-	-
I-26 EB C-9 OSS	7.25	-	-
I-26 EB C-10 OSS	12.0	-	-
I-26 EB C-11 OSL	16.5	-	-
I-26 WB C-12 OSS	6.75	-	-
I-26 WB C-13 OSL	18.5+	-	Core terminated

I-26 WB C-14 OSL (2)	18.5+	-	Core terminated
I-26 WB C-15 OSS	12.25	-	-
I-26 WB C-16 OSL	15.0	-	-
I-26 WB C-17 OSS	2.5	9.5	-
I-26 WB C-18 OSS	11.5	-	-
I-26 WB C-19 OSL	17.0	-	-

Table 3-3: Core Data - I-126

Core #	Asphalt Thickness	Concrete Thickness	ABC Present
I-126 EB C-20 OSS	9.75	-	11.0 +/-
I-126 WB C-21 OSS	14.5	-	-
I-126 WB C-22 OSS	10.0	-	-
I-126 WB C-23 OSL	16.75	-	-
I-126 WB C-24 OSS	9.75	-	8.0 +/-

3.2 Subgrade Testing

The in-situ subgrade strength was evaluated by Kessler Dynamic Cone Penetrometer (KDCP) at all coring locations. The KDCP is driven into the subgrade soils by dropping a Dual-Mass Hammer from a height of 22.6 inches. The depth of cone penetration is measures at selected penetration of hammer drop intervals and the soil shear strength is reported in terms of DCP index. The DCP index is used to estimate weighted average field CBR values using the NCDOT correlation. The tables below summarize the DCP data obtained from each tested location.

Core	Weighted Average Field ABC CBR	Weighted Average Field Subgrade CBR
I-20 WB C-1 OSS	-	33
I-20 WB C-1 OSL	69	31
I-20 WB C-2 OSS	-	31
I-20 WB C-2 OSL	-	38
I-20 EB C-4 OSS	-	20
I-20 EB C-4 OSL	45	24
I-20 EB C-5 OSS	-	28
I-20 EB C-6 OSS	-	29

Table 3-4: KDCP Data - I-20

Table 3-5: KDCP Data - I-26

Core	Weighted Average Field ABC CBR	Weighted Average Field Subgrade CBR
I-26 EB C-7 OSS	77	25
I-26 EB C-8 OSS	-	33
I-26 EB C-9 OSS	-	15
I-26 EB C-10 OSS	-	82
I-26 EB C-11 OSL	-	90
I-26 WB C-12 OSS	-	15
I-26 WB C-13 OSL	*	*
I-26 WB C-14 OSL (2)	*	*
I-26 WB C-15 OSS	-	83
I-26 WB C-16 OSL	-	59
I-26 WB C-17 OSS	-	25
I-26 WB C-18 OSS	-	10
I-26 WB C-19 OSL	-	39

*KDCP test was not conducted at this location

Core	Weighted Average Field ABC CBR	Weighted Average Field Subgrade CBR
I-126 EB C-20 OSS	62	15
I-126 WB C-21 0SS	-	13
I-126 WB C-22 OSS	-	15
I-126 WB C-23 OSL	-	46
I-126 WB C-24 OSS	61	26

Table 3-6: KDCP Data - I-126

4.0 Limitations

This report has been prepared in accordance with generally accepted geotechnical and pavement engineering practices for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The Client should note that the existing pavement structure recommendations have some inherent risk due to variability in the existing pavements and base thickness, as well as seasonal pavement and subgrade conditions. S&ME cannot qualify or warrant the material properties, or the dimensions or existing conditions in their entirety. As such, the Client should assess such parameters and the construction contingency risk this poses to the project.

Regardless of the thoroughness of a geophysical survey, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the method used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either pavement/subsurface conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the method used. As with most surface geophysical methods, resolution of the subsurface also decreases with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of pavement structure thickness was based on our review of provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

The GPR method used for this survey also has inherent limitations. Items such as target age, pavement structure thicknesses, lack of dielectric contrast, etc. may make the determination of layer boundaries and target locations difficult. The average maximum depth of penetration for the 2 GHz horn antenna is typically about 24 inches below the pavement surface. However, properties of the subsurface materials (e.g. moisture, etc.) can have a significant impact on the effective depth of penetration of the GPR survey. In addition, the GPS that was used for this survey is limited to sub-meter accuracy or higher when used at high speeds.

Appendices

Appendix I – Core Photographic Log

Date: 5/27-28/20 0 5 mar 10 11 12 13 14 15 15 17 Photographer: TRP I-26 EB OSL Location / Orientation 13 C-11 Remarks Date: 5/27-28/20 I 26 W 5 USA σ -1 8 Photographer: TRP 0 Location / Orientation I-26 WB OSS 14 C-12 Remarks

Appendix II – Kessler Dynamic Cone Penetrometer Graphs

Average CBR

Project Name: S&ME Project No.: 120_126_1126 620520008

Test Location: Thickness of Stone (in):

C-1_OSS_I20_W 0

Date: 5/27/2020-5/28/2020

n/a

Personnel:

Average CBR

Tes	st Data
No. of	Cummulative
Blows	Penetration
BIOWS	(mm)
1	21
1	33
1	40
1	48
1	54
1	59
3	72
3	89
3	103
3	114
3	129
3	149
3	179
1	201
1	230
1	258
1	281
1	309
1	341
1	367
1	389
1	405
1	416
1	425
1	435
1	444
1	454
1	462
1	472
1	481
1	491
1	500
1	509
1	517
10	602
10	703
10	802

	Weigh Max C Min CE	ted Avera BR BR	n/a n/a n/a	Weighted Max CBR Min CBR	Average	33 99 10
			Estimated Fie	eld CBR Value*		
	0.0	20	40	60	80	100
	5.0		-+		◆	
	10.0					
th (in)	15.0					
Dep	20.0					
	25.0					
	30.0		▲			
	35.0					

Stone Field CBR estimated using published NCDOT relationship. * Subgrade Field CBR estimated using relationship indicated above.

38

Date: 6/18/2020-6/19/2020

Personnel:

TRP

Project Name: S&ME Project No.: I20_I26_I126

C-1_OSL_I20_W

Depth (in)

30.0

Test Location: Thickness of Stone (in):

Project Name: S&ME Project No.: I20_I26_I126 620520008

Test Location: Thickness of Stone (in):

C-2_OSS_I20_W 0 Date: 5/27/2020-5/28/2020

Personnel:

TRP

Tes	st Data
No. of	Cummulative
NO. 01	Penetration
DIOWS	(mm)
1	44
1	89
1	123
1	155
1	195
1	231
1	255
1	265
1	271
1	277
3	294
3	317
3	335
3	354
3	374
3	397
3	412
3	431
3	459
3	497
3	541
3	582
3	616
3	645
3	674
3	701
3	717
3	733
3	748

Test Summary			
Stone		Soil Subgrade	
# Values	n/a	# Values	29
Average CBR	n/a	Average CBR	38
Weighted Avera	n/a	Weighted Average	31
Max CBR	n/a	Max CBR	71
Min CBR	n/a	Min CBR	7

Project Name: S&ME Project No.: 120_126_1126 620520008

Test Location: Thickness of Stone (in):

C-3_OSS_I20_W 0

Date: 5/27/2020-5/28/2020

Personnel:

TRP

No. of Blows Cummulative Penetration (mm) 1 23 1 38 1 50 1 61 1 70 1 78 1 96 1 104 1 112 3 136 3 154 3 165 3 171 3 180 3 195
Hol. of Blows Penetration (mm) 1 23 1 38 1 50 1 61 1 70 1 78 1 96 1 104 1 112 3 136 3 154 3 165 3 171 3 180 3 186 3 195
Liows (mm) 1 23 1 38 1 50 1 61 1 70 1 78 1 96 1 104 1 112 3 136 3 154 3 165 3 171 3 180 3 195
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 78 1 85 1 96 1 104 1 112 3 136 3 154 3 165 3 171 3 180 3 186 3 195
1 85 1 96 1 104 1 112 3 136 3 154 3 165 3 171 3 180 3 186 3 195
1 96 1 104 1 112 3 136 3 154 3 165 3 171 3 180 3 186 3 195
1 104 1 112 3 136 3 154 3 165 3 171 3 180 3 186 3 195
1 112 3 136 3 154 3 165 3 171 3 180 3 186 3 195
3 136 3 154 3 165 3 171 3 180 3 186 3 195
3 154 3 165 3 171 3 180 3 186 3 195
3 165 3 171 3 180 3 186 3 195
3 171 3 180 3 186 3 195
3 180 3 186 3 195
3 186 3 195
3 195
0 100
3 200
3 209
3 215
3 220
3 225
3 231
3 239
3 246
3 250
3 259
3 266
3 273
3 279
10 409
3 437
3 499
3 504 3 564
3 602
3 653
3 605
3 746
3 802
3 854

Test Summary			
Stone		Soil Subgrade	
# Values	n/a	# Values	42
Average CBR	n/a	Average CBR	61
Weighted Avera	n/a	Weighted Average	38
Max CBR	n/a	Max CBR	100
Min CBR	n/a	Min CBR	14

Project Name: S&ME Project No.: I20_I26_I126 620520008

Test Location: Thickness of Stone (in):

C-4_OSS_I20_E 0 Date: 5/27/2020-5/28/2020

Personnel:

TRP

Te	st Data
No. of	Cummulative
INO. OI	Penetration
BIOWS	(mm)
1	22
1	33
1	44
1	55
1	64
1	71
1	79
1	85
3	106
3	129
3	152
3	183
3	219
3	266
3	317
3	373
3	431
3	482
3	538
3	011
2	713
о С	790
3	000
3	921

Test Summary			
Stone		Soil Subgrade	
# Values	n/a	# Values	24
Average CBR	n/a	Average CBR	28
Weighted Avera	n/a	Weighted Average	20
Max CBR	n/a	Max CBR	59
Min CBR	n/a	Min CBR	9

Project Name: S&ME Project No.: I20_I26_I126 620520008

C-4_OSL_I20_E

3

Test Location: Thickness of Stone (in):

Tes	st Data
No. of	Cummulative
NO. OF	Penetration
BIOWS	(mm)
1	12
1	18
3	31
3	52
3	85
3	137
3	107
3	237
2	200
3 2	209
о С	0 44 200
<u>১</u>	30∠ 410
3	419
3	449
3	487
3	513
3	543
3	581
3	631
3	674
3	713
3	746

Test Summary			
Stone		Soil Subgrade	
# Values	5	# Values	16
Average CBR	50	Average CBR	25
Weighted Avera	45	Weighted Average	24
Max CBR	83	Max CBR	39
Min CBR	28	Min CBR	18

Project Name: S&ME Project No.: I20_I26_I126 620520008

Test Location: Thickness of Stone (in):

C-5_OSS_I20_E 0 Date: 5/27/2020-5/28/2020

Personnel:

TRP

Test Data	
No. of	Cummulative
NO. UI	Penetration
BIOWS	(mm)
1	45
1	91
1	142
1	163
1	184
1	212
1	236
1	259
1	278
1	298
1	316
1	334
1	349
1	367
1	384
1	399
1	413
1	428
1	442
1	454
1	466
1	478
1	489
1	497
1	506
1	515
1	524
3	548
3	572
3	595
3	616
3	636
3	655
3	674
3	693
3	711
3	729
3	746
3	764

Test Summary				
Stone		Soil Subgrade		
# Values	n/a	# Values	39	
Average CBR	n/a	Average CBR	31	
Weighted Avera	n/a	Weighted Average	28	
Max CBR	n/a	Max CBR	62	
Min CBR	n/a	Min CBR	6	

Project Name: S&ME Project No.: I20_I26_I126 620520008

Test Location: Thickness of Stone (in):

C-6_OSS_I20_E 0 Date: 5/27/2020-5/28/2020

Personnel:

TRP

Te	st Data
No. of	Cummulative
Blows	Penetration
DIOWS	(mm)
1	30
1	37
1	43
1	49
3	59
3	69
3	79
3	94
3	109
3	130
3	159
3	191
3	232
3	284
3	345
3	382
3	422
3	466
3	521
3	579
3	631
3	679
3	717
3	754
3	793
3	829
3	861
3	890

Test Summary Stone Soil Subgrade			
Average CBR	n/a	Average CBR	40
Weighted Avera	n/a	Weighted Average	29
Max CBR	n/a	Max CBR	100
Min CBR	n/a	Min CBR	10

Project Name: S&ME Project No.: I20_I26_I126 620520008

Test Location: Thickness of Stone (in):

C-7_OSS_I26_E 11

Date: 5/27/2020-5/28/2020

Personnel:

TRP

Test Data	
No. of	Cummulative
Blows	Penetration
DIOWS	(mm)
1	19
1	31
1	42
1	50
1	60
1	67
1	72
1	78
1	83
3	102
3	116
3	127
3	138
3	145
3	152
3	157
3	164
5	172
5	180
5	185
5	192
5	197
5	208
5	218
5	230
5	244
5	259
5	276
5	299
3	321
3	356
3	395
3	430
3	4/ð
3	500
3	631
3	676
3	712
े २	750
9	902

Test Summary			
Stone		Soil Subgrade	
# Values	28	# Values	13
Average CBR	80	Average CBR	29
Weighted Avera	77	Weighted Average	25
Max CBR	100	Max CBR	78
Min CBR	17	Min CBR	18

Project Name: S&ME Project No.: I20_I26_I126 620520008

Test Location: Thickness of Stone (in):

C-8_OSS_I26_E 0 Date: 5/27/2020-5/28/2020

Personnel:

TRP

Test Data	
No. of	Cummulative
Blows	Penetration
BIOWS	(mm)
1	22
1	33
1	41
1	51
1	60
1	68
1	78
1	85
1	92
3	116
3	143
3	168
3	194
3	218
3	248
3	275
3	310
3	338
3	359
3	386
3	416
3	441
3	465
3	512
3	559
3	593
3	618
3	635
3	652
3	679
3	718
3	760
3	807
3	849
3	889

Test Summary Stone Soil Subgrade			
Average CBR	n/a	Average CBR	37
Weighted Avera	n/a	Weighted Average	33
Max CBR	n/a	Max CBR	62
Min CBR	n/a	Min CBR	15

Project Name: S&ME Project No.: I20_I26_I126 620520008

Test Location: Thickness of Stone (in):

C-9_OSS_I26_E 0 Date: 5/27/2020-5/28/2020

Personnel:

TRP

Tes	st Data
No. of	Cummulative
Blows	Penetration
DIOWS	(mm)
1	26
1	39
1	53
1	70
1	89
1	110
1	129
1	144
1	162
1	176
1	198
1	219
1	241
1	261
1	286
1	302
1	320
1	360
1	382
1	403
1	420
1	450
1	433
1	470
1	524
1	557
1	598
1	630
1	650
1	667
1	679
1	690
1	703
1	718
1	733
1	750
5	845
5	994

Test Summary Stone Soil Subgrade			
Average CBR	n/a	Average CBR	17
Weighted Avera	n/a	Weighted Average	15
Max CBR	n/a	Max CBR	31
Min CBR	n/a	Min CBR	7

Project Name: S&ME Project No.: I20_I26_I126 620520008

Test Location: Thickness of Stone (in):

C-10_OSS_I26_E 0 Date: 5/27/2020-5/28/2020

Personnel:

TRP

Test Data	
No. of	Cummulative
Blows	Penetration
DIOWS	(mm)
1	13
1	19
1	26
1	32
1	35
1	40
3	48
3	60
3	69
3	80
3	90
3	101
3	109
3	118
3	129
3	137
3	146
3	155
3	163
3	172
3	182
3	190
3	197
3	207
3	217
3	226
3	235
3	244
3	204
о С	203
о С	274
2	200
3	290
3	320
3	337
3	354
3	375
3	404
3	430
9	461
l č	

Test Summary			
Stone		Soil Subgrade	
# Values	n/a	# Values	41
Average CBR	n/a	Average CBR	87
Weighted Avera	n/a	Weighted Average	82
Max CBR	n/a	Max CBR	100
Min CBR	n/a	Min CBR	26

Project Name: S&ME Project No.: 120_126_1126 620520008

Depth (in)

Test Location: Thickness of Stone (in):

Date: 5/27/2020-5/28/2020 Personnel: TRP C-11_OSL_I26_E 0 **CBR - DCP Correlation for Soil Subgrade** • North Carolina Department of Transportation (Shin, et al 1989) O U.S. Army Corps of Engineers (Webster, et al 1992) O Piedmont Residual Soils (Coonse 1999) **Test Summary** Stone Soil Subgrade # Values # Values 10 n/a Average CBR n/a Average CBR 91 Weighted Avera Weighted Average n/a 90 Max CBR Max CBR 100 n/a Min CBR n/a Min CBR 34 Estimated Field CBR Value* 20 40 60 80 100 0 0.0 ٠ 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Project Name: S&ME Project No.: 120_126_1126 620520008

Test Location: Thickness of Stone (in):

C-12_OSS_I26-W 0

Date: 5/27/2020-5/28/2020

Personnel:

TRP

Test Data	
	Cummulative
No. of	Penetration
Blows	(mm)
1	13
1	24
1	34
1	43
1	57
1	74
1	92
1	113
1	138
1	162
1	190
1	216
1	244
1	272
1	305
1	336
1	368
1	397
1	428
1	458
1	487
1	517
1	542
1	567
1	590
1	614
1	038
1	002 695
1	705
1	705
1	742
1	758
5	847
5	941
Ŭ	011

Test Summary			
Stone		Soil Subgrade	
# Values	n/a	# Values	35
Average CBR	n/a	Average CBR	16
Weighted Avera	n/a	Weighted Average	15
Max CBR	n/a	Max CBR	38
Min CBR	n/a	Min CBR	9

Project Name: S&ME Project No.: I20_I26_I126

Test Location: Thickness of Stone (in): C-15_OSS_I26_W

Depth (in)

Date: 5/27/2020-5/28/2020

Personnel:

TRP

Project Name: S&ME Project No.: 120_126_1126 620520008

Test Location: Thickness of Stone (in):

C-16_OSL_I26_W 0

Depth (in)

Date: 5/27/2020-5/28/2020

Personnel:

TRP

Tes	st Data
No. of	Cummulative
Riowo	Penetration
BIOWS	(mm)
1	14
1	22
1	29
1	34
3	44
3	54
3	61
3	68
3	77
3	84
3	92
3	98
5	111
5	123
5	135
5	146
5	158
5	171
5	184
5	197
5	209
5	224
5	234
5	250
5	273
5	303
3	325
3	347
3	300
3	390
3	412
3 2	434
3 2	400 702
3	400 512
3	5/3
2	577
3 2	612
3	6/9
3	696
J J	030
1	

Project Name: S&ME Project No.: 120_126_1126 620520008

Test Location: Thickness of Stone (in):

C-17_OSS_I26_W 0

Date: 6/18/2020-6/19/2020

Personnel:

TRP

Test Data	
Nie of	Cummulative
INO. OF	Penetration
Blows	(mm)
1	18
1	29
1	40
1	10
1	56
1	
1	60 60
	69 70
1	76
1	82
1	87
1	93
1	98
1	104
1	109
1	114
3	128
3	151
3	175
3	200
3	229
3	261
3	291
3	319
3	359
3	429
3	500
3	574
3	645
3	731
3	810

Test Summary			
Stone		Soil Subgrade	
# Values	n/a	# Values	29
Average CBR	n/a	Average CBR	41
Weighted Avera	n/a	Weighted Average	25
Max CBR	n/a	Max CBR	77
Min CBR	n/a	Min CBR	11

Project Name: S&ME Project No.: 120_126_1126 620520008

Test Location: Thickness of Stone (in):

C-18_OSS_I26_W 0

Depth (in)

20.0

25.0

30.0

35.0

Date: 6/18/2020-6/19/2020

Personnel:

TRP

Tes	st Data
NIf	Cummulative
INO. OF	Penetration
Blows	(mm)
1	32
1	58
1	77
1	02
	95
1	116
1	131
1	162
1	183
1	220
1	255
1	279
1	304
1	329
1	351
1	372
1	393
1	414
1	438
1	472
1	513
1	558
1	604
1	650
1	692
1	745
1	803
1	873
•	010

Project Name: S&ME Project No.: 120_126_1126 620520008

Max CBR

Test Location: Thickness of Stone (in):

C-19_OSL_I26_W 0

Date: 6/18/2020-6/19/2020

n/a

Personnel:

TRP

Test Data	
No. of	Cummulative
Riowo	Penetration
DIOWS	(mm)
1	29
1	44
1	54
1	62
1	67
1	73
1	76
3	89
3	103
3	116
3	128
3	145
3	168
3	208
3	284
3	326
3	354
3	381
3	405
3	429
3	452
3	477
3	503
3	529
3	554
3	578
3	602
3	626
3	650
3	674
3	699
3	726

Max CBR

Stone Field CBR estimated using published NCDOT relationship. * Subgrade Field CBR estimated using relationship indicated above.

100

11

Project Name: S&ME Project No.: I20_I26_I126 620520008

Test Location: Thickness of Stone (in):

C-20_OSS_I126_E 11 Date: 5/27/2020-5/28/2020

Personnel:

TRP

Test Data	
No. of	Cummulative
Blows	Penetration
DIOW3	(mm)
1	11
1	18
3	32
3	45
3	59
3	75
3	96
3	113
3	131
3	149
3	167
3	185
3	203
3	219
3	234
3	249
3	207
3 2	200
3	362
3	440
3	515
1	542
1	565
1	589
1	610
1	630
1	651
1	672
1	696
1	722
1	743
1	765
1	786
1	811
1	836
1	866
1	897

Test Summary				
Stone Soil Subgrade				
# Values	18	# Values	20	
Average CBR	62	Average CBR	15	
Weighted Avera	62	Weighted Average	15	
Max CBR	83	Max CBR	38	
Min CBR	31	Min CBR	10	

Project Name: S&ME Project No.: I20_I26_I126 620520008

Test Location: Thickness of Stone (in):

C-21_OSS_I126_W 0 Date: 5/27/2020-5/28/2020

Personnel:

TRP

Te	Test Data		
No. of	Cummulative		
Blows	Penetration		
DIOWS	(mm)		
1	23		
1	45		
1	73		
1	104		
1	136		
1	165		
1	190		
1	210		
1	229		
1	249		
1	269		
1	295		
1	324		
1	350		
1	371		
1	390		
1	408		
1	430		
1	451		
1	478		
1	502		
1	522		
1	547		
1	578		
1	609		
1	639		
1	671		
1	705		
1	734		
1	751		
1	776		

Test Summary				
Stone Soil Subgrade				
# Values	n/a	# Values	31	
Average CBR	n/a	Average CBR	13	
Weighted Avera	n/a	Weighted Average	13	
Max CBR	n/a	Max CBR	19	
Min CBR	n/a	Min CBR	9	

Project Name: S&ME Project No.: I20_I26_I126 620520008

Test Location: Thickness of Stone (in):

C-22_OSS-I126_W 0 Date: 5/27/2020-5/28/2020

Personnel:

TRP

Test Data	
No. of	Cummulative
NO. UI	Penetration
BIOWS	(mm)
1	44
1	85
1	113
1	132
1	150
1	168
1	186
1	207
1	231
1	255
1	272
1	287
1	302
1	318
1	331
1	348
1	365
1	381
1	400
1	420
1	443
1	469
1	506
1	542
1	579
1	611
1	636
1	657
1	676
1	694
1	713
1	730
1	746
1	765
1	784
1	803
1	822
1	842
1	862
1	880
1	899
1	918

Test Summary			
Stone		Soil Subgrade	
# Values	n/a	# Values	42
Average CBR	n/a	Average CBR	16
Weighted Avera	n/a	Weighted Average	15
Max CBR	n/a	Max CBR	26
Min CBR	n/a	Min CBR	7

Project Name: S&ME Project No.: 120_126_1126

Test Location: Thickness of Stone (in):

Depth (in)

Subgrade Field CBR estimated using relationship indicated above.

Project Name: S&ME Project No.: I20_I26_I126

C-24_OSS_I126_W

Test Location: Thickness of Stone (in):

No. of

Blows

ess of Stone (in): Test Data Cummulative Penetration (mm)

Test Summary				
Stone Soil Subgrade				
# Values	15	# Values	17	
Average CBR	61	Average CBR	28	
Weighted Avera	61	Weighted Average	26	
Max CBR	77	Max CBR	47	
Min CBR	26	Min CBR	15	

Appendix III - Core Data Sheets

PAVEMENT INVESTIGATION DATA SHEET

Project: TIP:

Route: County:

		Width		1		Thickness	3					Subarade			GPS Coordinates
Position (Sta.,Lane,Shldr.)	Cut/Fill (Est. of Amount)	Lane(s)	Shoulder(s)	Offset Distance (See Notes)	Crown "C" or Super "S"	Gross to Top of Soil	Asphalt	Concrete	Stone	Stabilized Subgrade Soil	Pavement Layering	Description Description Description Description	Soil Moisture Probe Depth	sphalt Notes	Northing Easting
I-20 WB C-1 OSS	F-10'		11.4	6.8 FW	/	15.25	15.25	-	-	-	A				N: 114094.91 E: 1369908.78
I-20 WB C-1 OSL	F-10'	12.0	11.4	4.0 FW	/	22.0+/-	9.5	9.5	4.0+/-	-	A C ABC				804798.3 1975802.0
I-20 WB C-2 OSS	F-6'		10.0	5.0 FW	/	17.75	17.75	-	-	-	A				N: 113444.77 E: 1368522.36
I-20 WB C-3 OSS	F-5'		9.8	5.1 FW	/	13.25	13.25	-	-	-	А				N: 111792.62 E: 1362970.86
I-20 EB C-4 OSS	C-5'		10.8	6.4 FW	/	10.75	10.75	-	-	-	A				N: 111363.03 E: 1361234.88
I-20 EB C-4 OSL	C5'	11.0	10.8	2.0 FW	/	15.75+/-	3.25	9.5	3.0+/-	-	A C ABC				801912.4 1967183.2
I-20 EB C-5 OSS	C-8'		9.0	5.8 FW	/	16.0	16.0	-	-	-	А				N: 111654.39 E: 1364126.16
I-20 EB C-6 OSS	F-4'		6.8	3.4 FW	/	12.0	12.0	-	-	-	A				N: 112851.49 E: 1367555.70
I-26 EB C-7 OSS	F-8'		10.0	5.0 FW	/	20.0+/-	9.0	-	11.0+/-	-	A ABC				N: 110506.01 E: 1361013.63
I-26 EB C-8 OSS	F-4'		9.8	4.5 FW	/	10.75	10.75	-	-	-	А				N: 108788.58 E: 1362485.33
I-26 EB C-9 OSS	F-2'		12.0	6.0 FW	/	7.25	7.25	-	-	-	А				N: 105761.11 E: 1362255.21
I-26 EB C-10 OSS	F-15'		9.0	4.5 FW	/	12.0	12.0	-	-	-	А				N: 102840.41 E: 1360995.44
I-26 EB C-11 OSL	F-15'		9.0	2.5 FW	/	16.5	16.5	-	-	-	A				N: 102808 30 E: 1360986 32
															N. 102000.03 E. 1000900.32

<u>Notes:</u> OSL = Outside Lane ISL = Inside Lane CL = Center Lane LTL = Left Turn Lane

CTL = Center Turn Lane RTL = Right Turn Lane DECEL = Deceleration Lane ACCEL = Acceleration Lane

OSS = Outside Shoulder ISS = Inside Shoulder GM = Grass Median OGS = Outside Grass Shoulder PS = Paved Shoulder RT LN = Right Lane LT LN = Left Lane COL = Collector Lane

RT = Right NB = Northbound SB = Southbound (I) = Inside FW = From White (O) = Outside FY = From Yellow

LT = Left

Date:

Notes By:

PAVEMENT INVESTIGATION DATA SHEET

Project: TIP:

Route: County:

Value Value <th< th=""><th></th><th>W</th><th>/idth</th><th></th><th></th><th>Thickness</th><th>S</th><th></th><th></th><th></th><th></th><th>Subgrade</th><th>GPS Coordinates</th><th></th></th<>		W	/idth			Thickness	S					Subgrade	GPS Coordinates	
128 129 100 5.70 1.70 6.70 1.70 7	Position (Sta.,Lane,Shldr.)	Cut/Fill (Est. of Amount)	Lane(s)	Shoulder(s)	Offset Distance (See Notes) Crown "C" or Super "S"	Gross to Top of Soil	Asphalt	Concrete	Stone	Stabilized Subgrade Soil	Pavement Layering	Description Soli Moisture Probe Depth Description	Northing	Easting
128 WB C-13 OS 120 153 10<	I-26 WB C-12 OSS	C-10'		10.0	5.0 FW	6.75	6.75		-	_			N: 101379.52	E: 1360474.88
PANB C14 04000 C10 100	I-26 WB C-13 OSL	C-10'	12.0	15.3	3.0 FW	18.5+	18.5+	?	?	?	A ?		N: 102230.92	E: 1360823.31
L28 B C 16 0. C 1 L2 L2 <thl2< th=""> L2 <thl2< td="" th<=""><td>I-26 WB C-14 OSL(2)</td><td>C-10'</td><td>12.0</td><td>9.0</td><td>1.0 FW</td><td>18.5+</td><td>18.5+</td><td>?</td><td>?</td><td>?</td><td>A ?</td><td></td><td>N: 104529.82</td><td>E: 1361818.64</td></thl2<></thl2<>	I-26 WB C-14 OSL(2)	C-10'	12.0	9.0	1.0 FW	18.5+	18.5+	?	?	?	A ?		N: 104529.82	E: 1361818.64
128 WB C-16 0SL C-15 12.0 9.8 2.5 FW 15 15 1.5 </td <td>I-26 WB C-15 OSS</td> <td>C-15'</td> <td></td> <td>9.8</td> <td>5.8 FW</td> <td>12.25</td> <td>12.25</td> <td>-</td> <td>-</td> <td>-</td> <td>A</td> <td></td> <td>N: 104755.07</td> <td>E: 1361934.02</td>	I-26 WB C-15 OSS	C-15'		9.8	5.8 FW	12.25	12.25	-	-	-	A		N: 104755.07	E: 1361934.02
L26 WB C-17 OSS F-19 L0 9.0 0.1 2 9.0 1.2 2.5 9.0 1.0 0.1 <th0.1< th=""></th0.1<>	I-26 WB C-16 OSL	C-15'	12.0	9.8	2.5 FW	15	15		-	_	A		N: 104810.96	E: 1361948.80
126 WB C-180 State 1.10 1.00 1.11 <th1< td=""><td>I-26 WB C-17 OSS</td><td>F-10'</td><td></td><td>9.0</td><td>4.0 FW</td><td>12</td><td>2.5</td><td>9.5</td><td>-</td><td>-</td><td>A C</td><td></td><td>797545.2</td><td>1968874.4</td></th1<>	I-26 WB C-17 OSS	F-10'		9.0	4.0 FW	12	2.5	9.5	-	-	A C		797545.2	1968874.4
$126 W B C \cdot 19 O M$ 114 100 $24 W$ 17 110 110 110 110 110 110 110 110 110 110 110 110 110 1100 1100 1100 1100 1100 11000 11000 110000 1100000 110000000000000	I-26 WB C-18 OSS	F-10'		9.0	4.0 FW	11.5	11.5	-	-	-	A		799062.1	1969015.7
1-126 EB C-20 OSS F-10 7.3 3.8 FW 20.75+/2 9.75 1.10+/- 1.46 ABC N: 106329.65 N: 10639.65	I-26 WB C-19 OSL	F-10'	11.4	10.0	2.4 FW	17	17	-	-	-	А		802375.6	1966026.3
1-26 WB C-21 OS AG	I-126 EB C-20 OSS	F-10'		7.3	3.8 FW	20.75+/-	9.75	-	11.0+/-	_	A ABC		N: 106329.95	E: 1364346.69
1-26 WB C-22 OS C-6 G.0 4.0 FW 10 <t< td=""><td>I-126 WB C-21 OSS</td><td>AG</td><td></td><td>22.0</td><td>9.4 FW</td><td>14.5</td><td>14.5</td><td>-</td><td>-</td><td>-</td><td>A</td><td></td><td>N: 103437.47</td><td>E: 1368000.41</td></t<>	I-126 WB C-21 OSS	AG		22.0	9.4 FW	14.5	14.5	-	-	-	A		N: 103437.47	E: 1368000.41
1-126 WB C-23 OSL C-6 12.0 10.0 4.3 FW 16.75 16.75 16.75 1.6 1.0 <th1.0< th=""> 1.0 1.0</th1.0<>	I-26 WB C-22 OSS	C-6'		6.0	4.0 FW	10	10	-	-	-	А		N: 105340.08	E: 1365199.31
I-126 WB C-24 OSS AG 8.0 4.6 FW 9.75 9.75 . 8.0+/. . AG AG Image: AG	I-126 WB C-23 OSL	C-6'	12.0	10.0	4.3 FW	16.75	16.75	-	-	-	A		795961.7	1971266.3
	I-126 WB C-24 OSS	AG		8.0	4.6 FW	9.75	9.75	-	8.0+/-	_	A ABC		796975.1	1970489.8

Notes: OSL = Outside Lane ISL = Inside Lane CL = Center Lane LTL = Left Turn Lane

CTL = Center Turn Lane RTL = Right Turn Lane DECEL = Deceleration Lane ACCEL = Acceleration Lane

OSS = Outside Shoulder ISS = Inside Shoulder GM = Grass Median OGS = Outside Grass Shoulder PS = Paved Shoulder RT LN = Right Lane LT LN = Left Lane COL = Collector Lane

RT = Right NB = Northbound SB = Southbound (I) = Inside FW = From White (O) = Outside FY = From Yellow

LT = Left

|--|

Notes By:

